Enterprise Continuous Integration Using Binary
Dependencies

Mike Roberts

ThoughtWorks, Ltd., Peek House, Eastcheap, London, UK
mroberts@thoughtworks.com

Abstract. Continuous Integration (CI) is a well-established practice which
allows us as developers to experience fewer development conflicts and achieve
rapid feedback on progress. CI by itself though becomes hard to scale as
projects get large or have independent deliverables. Enterprise Continuous
Integration (ECI) is an extension to CI that helps us regain the benefits of CI
when working with separately developed, yet interdependent modules. We
show how to develop an ECI process based upon binary dependencies, giving
examples using existing .NET tools.

Keywords: Continuous integration, scalability, tools and techniques, .NET

1 Continuous Integration — A Review

Kent Beck defines Continuous Integration (CI) by stating 'No code sits unintegrated
for more than a couple of hours. At the end of every development episode, the code is
integrated with the latest release and all the tests must run at 100%' [1]

Automated CI [2] takes much of the CI effort away by running an automated
build every time a developer commits a change to version control (see ‘Ubiquitous
Automation’ [3]) Automated CI is implemented by using a dedicated CI build server
tool like CruiseControl [4] or CruiseControl. NET [5].

Both of these processes assume you have a single source tree which is developed
as one advancing ‘code line’ [6].

Unfortunately, there can be scalability issues with this. While describing CI, Kent
Beck states 'If integration took a couple of hours, it would not be possible to work in
this style ... You also need a reasonably complete test suite that runs in a few minutes'
[1]. For a medium to large sized project (e.g. upwards of 5000 classes) a full build can
take an hour to complete when compilation, unit testing and acceptance testing are
included. This is long enough to significantly break up the development flow of a
project using CI.

There can also be business concerns with forcing a large development effort onto a
single source base with unified build and release timelines. Consider a client/server
application that has a server layer communicating not only with the client GUI but
also with other external applications. The release schedule for those external
applications places requirements on the server code that do not exist for the client

code. Thus, there is a need to decouple the GUI and server development efforts.
However, if the client code needs the server code to compile, the client build must be
able to find and reference the server code for each of its builds.

Finally, you may decide to break up your application into different ‘bounded
contexts’[7] when it makes sense to have semi-independent domain models within
your application.

All of these issues point to the same thing - sometimes the ideal approach of
developing with one tightly bound source tree doesn’t work out and we need to
introduce extra processes to help.

2 Breaking up the Build by Introducing Binary Dependencies

One way to start addressing the above issues is to separate out the source tree into
different modules, each with their own independent build and CI processes. Each
module uses pre-built binary versions of any other modules it depends on.

We’re going to use the client/server decoupling example from section 1 as a
common example thread throughout the rest of this paper. We’ll start resolving it by
applying this binary separation idea.

Assuming the application has a layered architecture [8], its source code should be
easily split into client, server and ‘common’ code. We can decouple the development
of the client and server layers by moving the source that is specific to the client into a
separate module in version control, leaving the common and server code in the
original module (which we call simply the server module from now on.)

The client code requires the server code in order to compile. As a 'first cut'
implementation to get the client building, we can include a pre-built binary version of
the server module in the client's version control tree. We also setup separate CI
servers to build each of the 2 modules.

This technique by itself is nothing new, but we now consider how we can extend
Continuous Integration techniques to such separated projects.

3 Enterprise Continuous Integration

By itself, the above separation process has a flaw. With the separated client and server
modules, as soon as a developer commits code to the server module, the client module
is building against an old version of the server code. In other words, the new server
code has not been integrated with the client code. Despite not having a unified build
and source tree, we can still apply the principles of Continuous Integration to the
complete application.

We define Enterprise Continuous Integration (ECI) as the process of integrating
2 separated but dependent source trees whenever code changes in either of the 2 trees.

ECI allows us to continually integrate separated modules as if they were developed
as one module.

3.1 Designing an Enterprise Continuous Integration process
Reviewing our client/server example:

e We have 2 separated modules in version control, one for the client and one for the
server

e FEach module has its own CI process that builds the contents of version control and
produces a versioned binary distribution

e The client source tree includes a built version of the server module

The next step is to add an Enterprise Continuous Integration (ECI) process that will
attempt to build the client module with the latest binary version of the server. This is
in addition to the existing CI process that just builds what is specified by the client’s
build script.

3.1.1 Specifying dependency versions

To setup such an ECI process we need a way of varying which version of the server
module the client is to build against. The first step to implementing this is to publish
the built versions (or distributions) of the server module to a file server. It needs a
structured directory layout, including the ability to locate distributions by both version
number, and /atest logical tag.

We can now update our client build to fetch a specified version of the server
module from the build server before building, rather than keeping a fixed copy within
the version control tree. The version of the client build script checked into the source
tree would always default to use a last-known-good version of the server that we have
successfully integrated with the client. However, the ECI process overrides the
server version to latest.

We’ll see concrete examples of all of this later on.

3.1.2 When to integrate

The next question is when do we integrate? With normal CI, we perform an
integration run whenever the source code changes, since that is the only changing
input of our integration process. However, our client build now has a ‘latest server
build’ that can also change, so we should perform an ECI run whenever there is a
change in either the source code we are integrating, or the binary dependencies upon
which the source code depends.

3.1.3 What to do on a successful ECI build

The client’s standard CI build is already responsible for producing a release-ready
distribution and corresponding source label, so what can you usefully do with a
successful ECI build? It’s always good to know when everything is working together,
so marking the client source with an appropriate label is a good practice. You can

automate it so it’s zero effort, and in most modern Source Control systems labeling is
a cheap, and fast, operation.

However, you know that the client build now passes all of its tests against a new
version of the server, so it’s also useful to automatically update the client’s /ast-
known-good server version so that developers, and future client builds, are up-to-date
with the server version.

3.1.4 What to do on a failed ECI build
There are 2 possible causes of an ECI build break:

e The source module (the client module in our example) is internally broken.
e There is a discrepancy between the source module and the latest versions of the
dependencies.

The first of these should also be picked up by standard CI processes. If an ECI
build fails in this way we should check that the standard CI process has failed in the
same way.

Breakages of the second kind are the feedback that ECI provides beyond
single-module CI. There are various reasons why such a situation can have occurred:
e A compilation error may indicate a change in the interface of the server module. In

this event, the development team could consider using deprecation cycles to avoid

breaks between modules.

e A breaking test could indicate that the client code was relying on ‘accidental
behavior’ of the server code. In this case the client code should be updated.

e A breaking test could also expose an untested part of the server code. In this case
the server module would need updating, preferably including a new test that would
simulate how the client code had broken the old code.

3.2 Versioning
So far we have made a few assumptions with respect to versioning:

e We do not need to worry about the versions of chained dependencies (e.g. the
dependencies of the server module itself.)

e Versions of the server module increase linearly, with no branching of versions.

e If the server module is branched, it is always appropriate for the client to build
against the frunk version of the server, rather than against a stable branch.

The first of these is a complicated area beyond the scope of this paper. A solution to it
would allow us to perform binary dependency-based ECI for scenarios where we’d
like any module in a complex dependency tree to cause an integration attempt for all
dependent modules.

The second two points do not require assessment if dependency modules are never
branched, but if they are we have some decisions to make. We’ll have an introductory
look at this area in the rest of this section.

3.2.1 Aside: Continuous Integration & Branching

Extreme Programming steers towards a model of continual release, and source tree
branching is not required in such an ideal model. However, due to business concerns
many agile development projects can’t release to the actual customer at the end of
every iteration (especially if iterations are 1 or 2 weeks long.) Typically a
development team will construct a release branch for fixing any bugs that may appear
in the release, but still be able to carry on continual development on the trunk.

In such a case, it is worth using the same CI process on the release branch that is
used on the trunk, e.g. to use the same automated build, testing, and distribution
techniques. However, if the CI process publishes distributables and performs labeling,
how do we perform CI for both the trunk and the branch in a non-conflicting manner?

A good answer is to do the following:

e Use different CI instances for each code line.
e Use an appropriate version numbering scheme so that the distributables and
labels produced by each CI instance are distinguishable from each other.

3.2.2 Targeting a project at a branched dependency

In our ongoing example, it may be necessary to target the client code at a branched
version of the server module. When branching the server, we would implement 2
standard CI processes (one for the branch and one for the head.) The branch CI
process should publish a ‘branch-latest’ distributable and the ECI process for the
client module should be updated to use this branch-specific version, rather than the
latest trunk version.

3.2.3 Ranged Versions and Published Interfaces

What we have done above is to create a ranged version. E.g. if the branch of the
server defined the /.2 version range of the module, we are saying that the client
module should be able to build against /.2.* (any 1.2 version) of the server.

The server trunk could now be considered the /.3 version range. The differences
between 1.2 and 1.3 may include an update of the ‘published interface’ [9] of the
module.

4 Example - Implementing Enterprise CI in .NET

Now we have a design for ECI, how do we implement it? For Java and .NET the tools
already exist since we can use standard CI and build applications. In .NET
specifically we can use CruiseControl. NET [4] and NAnt [10]. There are various other

NET build and CI tools (Draco.NET [11] and Hippo.NET [12] are alternative CI
tools, and MSBuild is an alternative build tool to be released as part of .NET 1.2)

We will follow on with the client / server example and will assume that the client
depends on a ‘1.2” branch of the server. We use NAnt and CruiseControl. NET as our
build and CI tools.

4.1 Defining the Distribution File Server Directory Structure

We are implementing ECI using binary dependencies, so let’s start off by setting up
our dependency distribution file server structure. Below is a directory tree that would
be created by the 3 individual ‘atomic’ CI instances (1 for the client, 1 for the server’s
1.2 branch, and 1 for the server’s /.3 trunk).

\\DistributionFileServer\
+--> Server
| +--> 1.2.455

| | +--> server.zip distribution file
| +--> 1.2.456
| +--> 1.2.457 the last successful 1.2 build
| +--> 1.2.latest always the last successful 1.2 build
| +--> 1.3.20
| +--> 1.3.21 the last successful 1.3 build
| +--> latest always the last successful trunk build
\
+--> Client
+--> 1045
| +--> client.zip distribution file
+--> 1046 the last successful client build

4.2 The client build script

We now setup a NAnt build script for the client. NAnt uses fargets to define actions to
happen during the build. Our build script needs a target to retrieve dependencies (get-
dependencies), and a main target (a//) that makes sure this happens before the rest of
the build occurs. The server-version number is specified in a property, and this can be
overridden by the environment calling the NAnt script. The server-version property
enables us to specify exactly which server distribution file to use.

<project name="client" default="all">

<property name="server-dist-location"
value="\\DistributionFileServer\Server"/>

<property name="server-version" value="1.2.456"/>

<property name="server-dist-name" value="server.zip"/>

<target name="get-dependencies">

<mkdir dir="dependencies\server"/>

<unzip zipfile=="${server-dist-location}\${server-
version}\${server-distname}" todir="dependencies\server" />

</target>

<target name="all" depends="get-dependencies, compile, test,
deploy, dist"/>

<!-- .. Other targets would go here.. -->

</project>

4.3 The CruiseControl.NET config file for the ECI build

Now we can create a CruiseControl. NET instance for our ECI build. We do this by

setting up a configuration file like the following. It has 2 critical sections:

1. A sourcecontrol section which defines where to check for modifications. We look
in 2 locations — on the filesystem to check for server version 1.2 changes and in cvs
to check for client changes.

2. A build section which defines what to build when a change is detected. It runs the
NAnt build tool, and specifies the client project’s build directory and build script
(which configured in the previous section). Importantly it overrides the server-
version property to always use the /atest version of the server.

It is the check of the server distribution directory, and the override of the server-
version property that would differentiate this from the client’s normal configuration.

<cruisecontrol>
<project name="ClientECI">
<sourcecontrol type="multi">
<sourceControls>
<filesystem>
<repositoryRoot>\\DistributionFileServer\Server\1l.2.latest</repositoryRo
ot>
</filesystem>
<cvs>
<executable>c:\tools\cvs-exe\cvswithplinkrsh.bat</executable>
<workingDirectory>c:\localcvs\myproject\client</workingDirectory>
</cvs>
</sourceControls>
</sourcecontrol>
<build type="nant">
<executable>c:\localcvs\myproject\client\tools\nant\nant.exe</executable
>
<baseDirectory>c:\localcvs\myproject\client</baseDirectory>
<buildArgs>-D:server-version=1.2.latest</buildArgs>
<buildFile>ccnet.build</buildFile>
<targetList>
<target>build</target>
</targetList>
</build>

<!-- Other CCNet config would also appear as normal -->
</project>
</cruisecontrol>

5 Other Solutions

5.1 Continue to use Atomic Code Lines

Our motivations for Enterprise Continuous Introduction were 2 possible issues that
can occur in medium-large development projects:

e Build process too slow

e Requirements for separated delivery of different components

The best solution, if possible, may well be not to separate out code lines.
Enterprise Continuous Integration adds extra process to your team and so if (for
example) you could actually shorten your build times by reworking your tests, etc.,
then this would be preferable. We use several techniques for this in ThoughtWorks.
One related technique is to have 2 separate CI builds for one code line: one an
‘express build’ that just runs unit tests to give a basic idea of the success of an
integration; another a longer ‘full’ build that actually runs database processes,
acceptance tests, deployments, etc.

5.2 Enterprise Continuous Integration using separated source code lines

A very different approach that some of my colleagues at ThoughtWorks have used
successfully on large teams is to not separate out the project into binary dependencies,
but instead to give different teams separated source areas (either on separated
branches or in separate source control servers.) Each team has its own CI process for
the code they are working on, but there are also ECI processes that attempt to
integrate the entire project’s code (both into and from each team’s code line.)

A similar approach is Gump [13] which tries to build the latest source versions of
various projects against each other.

6 Further Work

We have seen a design and corresponding implementation in .NET for Enterprise
Continuous Integration which will work for many scenarios. However, we have not
addressed the issue of ‘chained dependencies’, and specifically what happens when
the versions of chained dependencies change. This area requires further work. .NET
supports ranged assembly version specification, so it is possible that this may be of
use in a .NET implementation.

Other areas affecting versioning that are worthy of investigation include:

e Is it worth thinking about the difference between build- and run-time
dependencies?

e What is a convenient way of expressing versioned dependency requirements in
build scripts and deployment artifacts?

Maven [14] includes some solutions towards these problems. It offers a way for
projects to define their structure and dependencies, and from this definition ‘builds’
the project to produce various artifacts. It also publishes and downloads built projects
using well structured, versioned repositories.

Apart from versioning, we could also address the following:

e For projects consisting of lots of separated modules, would it be worth introducing
modules just for the basis of integration?

e What tests should we run in an ECI build? Can we optimize the ECI build by only
running specific tests based on which dependencies have changed?

7 Summing Up

Extreme Programming defines a very useful set of practices and values that can be
used throughout agile software development, including the practice of Continuous
Integration. In this paper we have explored one way to solve scalability issues with
Continuous Integration by splitting up a project into several modules, and then using
Enterprise Continuous Integration (implemented with existing tools) to still gain the
feedback that single-project CI provides.

References

. Beck, K.: Extreme Programming Explained, Addison Wesley (2000)

. Fowler, M., Foemmel, M., :
http://martinfowler.com/articles/continuouslntegration.html

. Hunt, A., Thomas, D.: The Pragmatic Programmer, Addison Wesley (1999)

. CruiseControl: http://cruisecontrol.sourceforge.net/

. CruiseControl.NET: http://ccnet.thoughtworks.net/

. Berczuk, S., Appleton, B.: Software Configuration Management Patterns, Addison
Wesley (2003)

. Evans, E: Domain-Driven Design, Addison Wesley (2004)

8. Fowler, M.: Patterns of Enterprise Application Architecture, Addison Wesley

(2003)

9. Fowler, M: http://martinfowler.com/ieeeSoftware/published.pdf

10.NAnt: http:/nant.sourceforge.net/

11.Draco.NET: http://draconet.sourceforge.net/

12.Hippo.NET : http://hipponet.sourceforge.net/

13.Apache Gump : http://jakarta.apache.org/gump/

14.Apache Maven : http://maven.apache.org/

N =

AN bW

-

